Placera på stolar, hur många olika sätt kan en person placera sig på tre stolar? Denna övning kan dramatisera eleverna genom att försöka med tre elever och tre stolar i varje grupp. Samtidigt, när eleverna ställer sig annorlunda, bör de publicera hur de gör det. Som lärare kan du observera hur eleverna agerar och märka och markera intressanta argument som senare kan diskuteras i en hel klass.
Baserat på elevernas resonemang är det ofta möjligt att skapa en bild av hur eleverna tänker och vilka svårigheter de står inför. Nämnare nr 2 är en permutation. Symboler för olika personer kan flyttas till bordet. Många studenter kommer sannolikt att försöka hålla investeringarna i ordning genom att markera eller rita. Svårigheten är att skapa en struktur i anteckningarna, de kan vara svåra att följa, och det kan vara svårt för eleven att veta om de har hittat alla möjligheter.
Därför är det viktigt att slutföra övningen i ett helt klassrum och hjälpa eleverna att organisera anteckningar och resonemang. Om du har tillgång till en interaktiv skrivtavla kan du skapa ett bord och rita symboler för tre elever och klona symbolerna. Tabellen utökas sedan när klassen diskuterar. Symbolerna kan enkelt dras in i bordet och en struktur för alla möjliga investeringar uppstår.
Strukturen hjälper eleverna att få en metod att använda, vilket i sin tur skapar mer trygghet samt möjligheter att generalisera övningen. En plats på stolar kan betraktas som en av några grundläggande övningar som eleverna ska vara eller bli bekanta med inom kombinatorik. Med stöd av denna tabell kan eleverna leda att tänkande kan leda till följande tänkande: Den första platsen kan väljas på tre olika sätt.
När vi sätter en person i första hand finns det två möjligheter till placering på plats. Då finns det bara en möjlighet. Kan du alltid tänka så? För att svara på frågan kan eleverna behöva arbeta med ett stort antal uppgifter. Utöka problemet genom att öka antalet personer och stolar. Vad sägs om vi har fyra personer och fyra stolar eller fem personer och fem stolar?
Istället för att använda stolar kan eleverna arbeta med andra laboratoriematerial, rita och skriva symboler. Målet är att överväga om antagandet baserat på de tre stolarna är korrekt och konsolidera hur antalet permutationer beräknas. Multiplikationen kallas Femfaculty och är märkt 5! I slutet av artikeln finns en lista med länkar som leder till pedagogiskt material som kan vara användbart för både fullklassrecensioner och individuellt lärande.
En djuraktivitet som lär ut samma innehåll som ovanstående övning finns på Creative Math.
Treåriga köer kan användas som en alternativ introduktion. I den första övningen fanns det sex olika sätt för tre elever att placera sig på tre stolar. Vi kan använda detta resultat i Sannolikhet. Låt tre elever lämna klassrummet. Sedan måste de återvända till rummet i vilken ordning de vill, men först får eleverna som stannar i klassrummet skriva ner i vilken ordning de tror att stipendiaterna kommer in.
Skriv ner på tavlan vilka kombinationer eleverna har valt. Tre elever går in i klassrummet. Se hur detta motsvarar den teoretiska sannolikheten. Eftersom det finns sex möjliga kombinationer är sannolikheten för varje resultat en sjätte. I denna övning ändrar vi sammanhanget så att två olika typer av objekt kombineras med varandra. Det är lämpligt att börja med två eller tre av varje sort.
Det låga antalet objekt gör det lättare för eleverna att skapa en tankestruktur. De kan lönsamt använda tabellen för att publicera resultatet. När du arbetar med ett interaktivt skrivbord är det enkelt att rita bilder i bordet. I en vanlig målning kan du arbeta med bilder och magneter. Eleverna kan också använda lämpligt material att välja mellan. Vi ser att två kepsar kan kombineras med två par glasögon på fyra sätt.
Vad händer om vi tar tre mössor och tre par glasögon? Be eleverna fortsätta med att öka antalet mössor och glasögon tills de ser ett prov. Alternativt kan du till exempel kombinera tröjor och byxor eller pålägg och grönsaker på en smörgås. Kopiera grunden för övningen om att kombinera tröjor och byxor, du hittar länken till shorts och skjortor. Ett förslag är att använda fyra olika färger på byxor och fyra olika färger på tröjor.
Observera att om någon elev inte har fullfärgssyn. När kläderna är färgade kan du klippa ut fläckarna med 16 olika uppsättningar kläder. Placera lapparna upp och ner, blanda och dra lappen med en tröja och lappa med ett par byxor. Ställ frågor som: hur sannolikt är det att dra ut en röd tröja? Hur sannolikt är det att dra ut blå byxor och en röd tröja?
Utöka antalet kombinationer av kombinationer, Hattar och glasögon kombineras utan hänsyn till ordern. Hatt-och glasögonövningarna ovan kan utformas på olika sätt, till exempel genom att öka antalet olika hattar och glasögon. Ett annat sätt är att öka antalet olika objekt som kan kombineras. Vad händer om jag, förutom hatten och glasögonen, också tar med halsdukar?
Hur kan jag strukturera detta? Hur många kombinationer får jag? I tabellen ser vi att tillägget av en halsduk innebär att var och en av de tidigare kombinationerna expanderas med ytterligare två kombinationer.
Till exempel, förutom kläder, kan vi sätta ihop tre menyer baserat på menyn, där det finns flera förrätter, varma rätter och desserter att välja mellan. Studenter som snabbt förstår grunderna i hur tre objekt möts kan gå vidare till ännu mer. Ju fler objekt vi har desto mer omfattande behöver bordet, vilket leder till behovet av att hitta en allmän formel.
Kombinationen, hattar, glasögon och halsdukar kombineras utan hänsyn till beställningen. Nämnare nr 4 är två objekt, men olika antal av en annan variant i övningen är att ha olika antal olika objekt. Vi kan till exempel föreställa oss att vi har tre tröjor som kombineras med två par byxor. På samma sätt som tidigare är det lämpligt att arbeta med bordet.
I Bobby Björns "korta aktivitet" kan du välja om du vill kombinera lika många tröjor och byxor eller om du vill ha mer. Det var kul PR från början, men vi återupptäckte snabbt hur fantastiskt hockey kul det är. Sitter i omklädningsrummet och pratar skit, allt runt hockey är mycket roligt. Så vi sa till varandra att vi borde investera i hårt. Och eftersom vi båda är ganska envisa, och när vi bestämmer oss för att investera i något, gör vi det mer än uppriktigt, så vi investerade i det.
Detta innebar att vi fick ett helt oöverstigligt Heltidsjobb, utöver detta på brödernas restauranger. Sedan sa vi, halvt skämtsamt och halvt seriöst, att om tio år skulle vi spela SHL. Vi gick snabbt igenom fyra till den tredje och sedan snabbt in i den andra. Sedan spelade vi ut på V Xvirmd XVI och startade också ett ungdomslag. Därför var vi tvungna att tänka lite på en ny, antingen för att snurra upp hela laget eller för att starta samarbete med en annan förening.
Det var i detta läge som Tom Turnströms sportchef Vesby hörde av sig och undrade om vi skulle sponsra med en skylt i hallen. Han kom in på kontoret, och vi började prata om hur svårt det var att starta en förening, och att Vesby var i ekonomiska problem.
Då kom en tanke till oss, och diskussionen började. Efter några fler möten bestämdes det, och vi kom överens om att kombinera brödernas hockey och v Trettonsby. Vi trodde att de hade ett bra upptagningsområde där längs E4, och problemet med istiden och spelarna skulle lösas. Föreningen bedrivs på samma sätt som alla andra föreningar, det vi gör är att spendera många oöverstigliga timmar och använda vårt stora kontaktnät för att hitta samarbete med företag.
Jag tror att den traditionella sponsringen går bort, för närvarande vill företag tjäna pengar för att synas i föreningar. Det handlar om att ge dem ett nätverk där de kan få möjlighet att etablera affärskontakter och därmed få det. Jag ringer förmodligen 40 samtal om dagen för att hitta samarbete kring ishockey. Då är det viktigt att hitta företag som kan dra nytta av varandra så att du kan komma till anslutningarna där företag också tjänar dem.